10 เทคโนโลยี ที่ สวทช. โดย ดร. ณรงค์ ศิริเลิศวรกุล ผู้อำนวยการ สวทช. เลือกมานี้ เป็นการคาดการณ์เทคโนโลยีที่จะมีผลกระทบได้อย่างชัดเจนใน 5 – 10 ปีข้างหน้า
และขณะนี้บางเทคโนโลยีอาจใกล้จะเป็นผลิตภัณฑ์ หรือบริการใหม่ ๆ ได้แล้ว บางชนิดอาจจะยังเป็นต้นแบบหรือการทดสอบเบื้องต้น แต่มีความเป็นไปได้สูงที่จะส่งผลกระทบกับชีวิตและธุรกิจในอนาคตอันใกล้นี้ ลองมาดูกันว่า 10 เทคโนโลยีที่ว่านั้น มีอะไรกันบ้าง

1. เครือข่ายมือถือ 5G/6G (Mobile Network 5G/6G)
ระบบ 4G ที่ใช้กันในปัจจุบันก็สามารถทำความเร็วในการรับส่งข้อมูลสูงสุดเพิ่มขึ้นจาก 3G อีกราว 50 เท่า และสำหรับ 5G จะมีการรับส่งข้อมูลสูงสุดเพิ่มขึ้นไปอีก 20 เท่าจาก 4G

แต่ที่พิเศษคือใช้การได้แม้แต่ขณะที่เคลื่อนที่เร็วถึง 500 กิโลเมตร/ชั่วโมง สามารถส่งข้อมูลต่อพื้นที่เพิ่มขึ้นอีก 100 เท่า ดังนั้น 5G จะเป็นแพลตฟอร์ม (Platform) ที่เชื่อมโยงเทคโนโลยีอื่น ๆ เข้าไว้ด้วยกัน เช่น AI, Big Data, Cloud และ IoT เป็นต้น

ทำให้สามารถรองรับระบบรถยนต์ไร้คนขับ เกิดบริการรูปแบบใหม่ ๆ ที่ไม่เคยมีมาก่อนได้มากมาย เช่น การขายโดยใช้ AR/VR ช่วยการเชื่อมต่อยานพาหนะเข้ากับระบบควบคุมการจราจรได้
นอกจากนี้ยังรวมถึงการให้บริการปรึกษาทางการแพทย์ทางไกล หรือแม้แต่ผ่าตัดทางไกลผ่านระบบอินเทอร์เน็ต

2. การคำนวณและวิศวกรรมควอนตัม (Quantum Computing & Engineering)
เทคโนโลยีควอนตัม จะเข้ามามีบทบาททำให้ภาพที่เราจินตนาการไว้เกิดขึ้นได้จริง เช่น คอมพิวเตอร์สามารถเพิ่มประสิทธิภาพให้ดีขึ้นหลายพันเท่าสามารถถอดรหัสดีเอ็นเอของสิ่งมีชีวิตที่ยาวมากเป็นพัน ๆ ล้านหน่วย
สามารถสร้างแบบจำลองเพื่อค้นหายาใหม่ ๆ ที่ใช้ได้อย่างแม่นยำกับผู้ป่วย ใช้ตรวจวินิจฉัยโรคในการแพทย์ได้อย่างรวดเร็วไม่ต้องรอผลแล็บหลายวัน

รวมถึงยังมีการสร้างอุปกรณ์ไฮเทคอื่น ๆ เช่น ชิปสำหรับนาฬิกาอะตอม (Atomic Clock) ใช้เทียบค่าเวลาสากลที่มีความแม่นยำมาก ถึงระดับนาโนวินาที (nano-second) รองรับการซื้อขายในระบบธนาคาร หรือคำสั่งซื้อในตลาดหลักทรัพย์ที่มีปริมาณถึง 100 ล้านคำสั่งต่อวินาทีได้

3. เอไอแห่งอนาคต (Future AI)
ระบบปัญญาประดิษฐ์แห่งอนาคตหรือ Future Artificial Intelligence จะมีส่วนที่เป็นหัวใจหรือสมองของระบบได้แก่ เทคโนโลยีการเรียนรู้ของเครื่อง หรือ Machine Learning
ด้วยเครือข่ายประสาทเทียม ที่เรียกว่า Deep Neural Network ซึ่งสร้างโดยเลียนแบบเครือข่ายเซลล์ประสาทในสมองของมนุษย์ ความสามารถของ AI ที่เพิ่มขึ้น

ทำให้ระบบไซเบอร์-ฟิสิคัล (Cyber-Physical System) ที่ส่งผ่านข้อมูลระหว่างโลกอินเทอร์เน็ตกับโลกจริงทางกายภาพมีประสิทธิภาพมากขึ้น เช่น รถยนต์ขับเคลื่อนอัตโนมัติไร้คนขับ AI ประมวลผลและสั่งการควบคุมการขับรถได้ในเวลาเสี้ยววินาทีด้วยประสิทธิภาพและความปลอดภัยที่มากขึ้น แต่อาจจะทำให้คนขับรถจำนวนมากต้องตกงาน
มีการคาดการณ์ว่าในปี ค.ศ. 2030 AI จะทำให้ตำแหน่งงานหายไป 400 – 800 ล้านตำแหน่ง แม้จะทำให้เกิดงานใหม่ ๆ ขึ้นมาพอๆ กัน แต่จะเป็นทักษะที่แตกต่างออกไปอย่างสิ้นเชิง

4. การเดินทางแบบไร้รอยต่อ (Mobility–as–a–Service, MaaS)
Mobility–as–a–Service หรือ แมส (Maas) มีการเติบโตแบบก้าวกระโดดของเทคโนโลยีนี้ในปัจจุบัน
ตัวอย่างผู้ให้บริการแมสรายใหญ่ 2 รายคือ อูเบอร์ (Uber) ของสหรัฐฯ กับ ตี๊ตี๊ (DiDi) ของจีน ข้อมูลปี พ.ศ. 2560 ระบุว่ามูลค่าของบริษัทตี๊ตี๊อยู่ที่ราว 56,000 ล้านเหรียญสหรัฐฯ ขณะที่อูเบอร์มากกว่าคือ 62,000 ล้านเหรียญสหรัฐฯ
ที่น่าสนใจคือ ตี๊ตี๊ เป็นบริษัทที่โตอย่างก้าวกระโดดจากการเทคโอเวอร์บริษัทอูเบอร์ในจีน เมื่อปี พ.ศ. 2559

ปัจจุบัน นอกจากการนำผู้โดยสารไปยังที่หมายแล้วยังบริการส่งของต่าง ๆ อย่างบริการ GrabFood และ Line Man ที่ได้รับความนิยมอย่างสูงในประเทศไทยอยู่ในขณะนี้
ทั้งนี้สถาบันวิจัย BIS Research ประเมินว่าอนาคตอันใกล้ ตลาดของแมสกำลังเติบโตด้วยความเร่ง โดยปัจจัยสำคัญคือ ความสามารถในการสร้างแพลตฟอร์มการให้บริการยานพาหนะ และความสามารถในการให้บริการแบบ On Demand รวมถึงการสนับสนุนอย่างเหมาะสมโดยภาครัฐ

5. เซลล์แสงอาทิตย์เพอรอฟสไกต์ (Perovskite Solar Cell)
เซลล์แสงอาทิตย์แบบเพอรอฟสไกต์ มีโครงสร้างผลึกคล้ายแร่แคลเซียมไทเทเนียมออกไซด์ (CaTiO3) หรือแร่เพอรอฟสไกต์ ที่ดูดซับแสงและเปลี่ยนแสงอาทิตย์เป็นพลังงานไฟฟ้าได้ดี ยังสามารถขึ้นรูปได้ในลักษณะสารละลายคล้ายกับน้ำหมึกพิมพ์ เพื่อนำไปพิมพ์บนแผ่นฟิล์มหรือพื้นผิวต่าง ๆ โดยมีต้นทุนการผลิตต่ำ คือ 30 – 50% ของเซลล์แสงอาทิตย์แบบซิลิคอน
มีการประเมินว่าในอีก 5 – 6 ปีข้างหน้าตลาดของเซลล์แสงอาทิตย์น่าจะเติบโตไปได้จนถึง 1.4 แสนล้านเหรียญ และด้วยข้อดีของเซลล์แบบนี้ที่มีน้ำหนักเบาและโค้งงอได้ไม่เสียหาย

ปัจจุบันจึงมีภาคเอกชนจากสหราชอาณาจักร เนเธอร์แลนด์ และจีน ตั้งเป้าผลิตเซลล์แสงอาทิตย์เพอรอฟสไกท์ออกขายในปีหน้า

สำหรับประเทศไทยนักวิจัย สวทช. พัฒนาทั้งส่วนที่เป็นโครงสร้างวัสดุในการส่งผ่านอิเล็กตรอน สารเคลือบผิวชนิดกันน้ำและสะท้อนความร้อน รวมทั้งพัฒนากระบวนการเคลือบฟิล์มบางเพื่อเพิ่มประสิทธิภาพและเสถียรภาพของเซลล์แสงอาทิตย์ชนิดนี้

6. แบตเตอรี่ลิเทียมยุคหน้า (Next Generation Lithium Ion Batteries)
ในปี พ.ศ. 2561 มูลค่าตลาดของแบตเตอรี่ลิเทียมไอออน สำหรับยานยนต์ไฟฟ้า และอุปกรณ์อิเล็กทรอนิกส์อื่นๆ อยู่ที่ 36,000 ล้านเหรียญสหรัฐฯ เติบโตปีละ 13%

โดยจีนจะเป็นผู้ผลิตรายใหญ่ที่สุด แม้จะยังไม่มีแบตเตอรี่ที่มีคุณสมบัติครบทุกอย่าง แต่ก็มีแบตเตอรี่ที่น่าสนใจหลายแบบ เช่น
- แบตเตอรี่แบบ Solid–state Lithium Ion ที่จุพลังงานได้มากขึ้นเป็น 2 เท่า และมีความปลอดภัยมากขึ้น
- แบตเตอรี่ลิเทียม–ซัลเฟอร์ (Lithium-sulfur) ที่คนหันมาสนใจกัน เพราะจุพลังงานได้มากกว่าแบบลิเทียมไออน 2 – 4 เท่า แต่ราคาถูกกว่า
- แบตเตอรี่ลิเทียม–แอร์ (Lithium-air) จุพลังงานมากขึ้นถึง 10 – 100 เท่า
ทั้งนี้ เอ็มเทค สวทช. มีงานวิจัยด้านวัสดุใหม่ ๆ และการออกแบบขึ้นรูปเซลล์ในแบตเตอรี่แบบ Solid-state Lithium Ion และ Lithium-air โดยเน้นไปที่การเพิ่มประสิทธิภาพ เพิ่มอายุการใช้งาน และลดราคาต้นทุน

7. โครงเสริมภายนอกกาย (Exoskeleton)
เป็นเทคโนโลยีที่ช่วยให้มนุษย์มีพละกำลังเสริม และยังป้องกันอันตรายบางอย่างต่อร่างกายได้
ซึ่งมีการนำ Exoskeleton ใช้ช่วยเพิ่มความสามารถทำภารกิจต่าง ๆ ใช้ในทางทหาร ใช้กู้ภัย ใช้ช่วยเรื่องฝึกฝนและสร้างสมรรถภาพของนักกีฬาได้
และในทางการแพทย์ก็ช่วยเร่งกระบวนการฟื้นฟูสมรรถภาพร่างกายของผู้ป่วย ยกระดับคุณภาพชีวิตคนพิการหรือผู้สูงอายุโดยทั่วไปได้อีกด้วย

ตัวอย่างที่ใช้งานแล้วในระดับอุตสาหกรรม เช่น
- ชุด EskoVest ของ Esko Bionics ในโรงงานประกอบรถยนต์ของ Ford ทั่วโลก
- ชุด Chairless chair ของ Noonee ที่เป็นอุปกรณ์สวมใส่ติดอยู่บริเวณเอว ขา และเท้าของผู้ใช้สามารถกางออกเป็นเก้าอี้ได้ ซึ่งใช้งานแล้วมากกว่า 350 ชิ้น

8. ไฟเบอร์สารพัดประโยชน์จากจุลินทรีย์ (Microbial Multifunctional Fiber)
มีจุลินทรีย์หลายชนิดที่สามารถสร้างเซลลูโลส แต่เซลลูโลสในจุลินทรีย์ต่างจากเซลลูโลสในพืชตรงที่ สามารถทำออกมาให้บริสุทธิ์ได้ง่ายกว่า แข็งแรงกว่า ขึ้นรูปได้ง่ายและยังอุ้มน้ำได้ดีด้วย

ตัวอย่างจุลินทรีย์ที่ผลิตเซลลูโลสได้ ได้แก่ พวก Acetobacter และ Agrobacteria
โดยเซลลูโลสที่จุลินทรีย์เหล่านี้สามารถนำมาประยุกต์ใช้ประโยชน์ได้หลายรูปแบบ ทั้งเป็นสารตั้งต้นทำอาหาร เช่น เติมในวุ้นมะพร้าว เต้าหู ไอศกรีม หรือโปรตีนเกษตร

ในทางการแพทย์สามารถเปลี่ยนน้ำตาล Mannitol ได้ เมื่อผ่านกระบวนการอีก 2 – 3 ขั้นตอนจะเกิดเป็นไบโอฟิล์ม (biofilm) ที่เหมาะทำเป็นผลิตภัณฑ์ปิดแผล หรือผิวหนังเทียม (artificial Skin)
นักวิจัยจาก ETH Zurich University พัฒนาเทคนิคการพิมพ์ 3 มิติ โดยใช้จุลินทรีย์ที่ยังมีชีวิตอยู่เป็นองค์ประกอบนำมาผลิตนาโนฟิลเตอร์ ใช้กรองสารพิษได้
ส่วนในด้านอุตสาหกรรม บริษัท Nanollose ในออสเตรเลีย ตั้งต้นของเหลือทิ้งในอุตสาหกรรมและการเกษตรนำไฟเบอร์ที่ได้มาผลิตเป็นเสื้อผ้าหรือผลิตภัณฑ์อื่น ๆ โดยไม่ต้องตัดพืช ซึ่งต้องอาศัยความรู้สาขาใหม่ด้านชีววิทยาการสังเคราะห์ ที่เติบโตอย่างก้าวกระโดดในทศวรรษที่ผ่านมา8.

9. กายจำลองทดสอบยา (Companion Diagnostics)
ในปี พ.ศ. 2558 สวทช. เคยกล่าวถึงเทคโลยีการเพาะกลุ่มเซลล์สมองที่เรียกว่า Brain Organoid ที่มีขนาดและรูปร่างคล้ายกับสมองของตัวอ่อนในครรภ์อายุ 5 สัปดาห์ มีขนาดเท่าก้อนยางลบดินสอ และส่งถ่ายกระแสประสาทได้จริง จึงใช้เป็นโมเดลในการทดลองต่าง ๆ แก้ปัญหาจริยธรรมเรื่องการใช้มนุษย์ทดลองยาโดยตรง
ไม่เพียงแต่สมองจิ๋ว ยังมีอวัยวะอื่น ๆ อีกหลายอย่างก็เพาะเลี้ยงได้เช่นกัน เรียกรวม ๆ ว่าเป็น ออร์แกนอยด์ (Organoid) ที่แปลว่า “อวัยวะเล็ก ๆ” ถือเป็นหนึ่งในเครื่องมือที่ใช้ตรวจวิเคราะห์ทดสอบที่สำคัญได้ เช่น ตรวจความเป็นพิษ และศึกษาปฏิสัมพันธ์ของเซลล์กับสารออกฤทธิ์
ความก้าวหน้าครั้งใหญ่เกิดขึ้นจากระบบที่เป็นแพลตฟอร์มเชื่อมต่อออแกนอยด์ของอวัยวะต่าง ๆ เข้าด้วยกันผ่านระบบของเหลว จนได้ผลลัพธ์คล้ายเป็นร่างกายเทียมขนาดจิ๋ว หรือเป็น “กายจำลอง” ที่นำมาใช้ทดสอบยาได้

จุดเด่นของระบบแบบนี้คือ สามารถออกแบบให้ใช้เหมาะกับผู้ป่วยแต่ละคนได้ จึงเป็นการแพทย์เฉพาะบุคคล (personalized medicine) แบบหนึ่ง ระบบนี้เรียกรวม ๆ ว่าเป็น Companion Diagnostics หรือ “กายจำลองทดสอบยา”
ระบบ “กายจำลองทดสอบยา” นี้จะทำให้การทดสอบยากับเซลล์เพาะเลี้ยงแต่ละชนิดเป็นเรื่องล้าสมัย เพราะสามารถเลียนแบบการตอบสนองของร่างกายจริง ๆ ได้อย่างน่าทึ่ง ทั้งการบีบตัวของเซลล์หัวใจ การตอบสนองของระบบภูมิคุ้มกันของเซลล์กระดูก การส่งถ่ายและกำจัดสารต่าง ๆ ออกจากเซลล์ไต รวมไปถึงการเผาผลาญทำลายสารต่าง ๆ ในเซลล์ตับ เป็นต้น

10. วัคซีนมะเร็งเฉพาะบุคคล (Personalized Cancer Vaccine)
การรักษาโรคมะเร็ง โดยการฉายรังสี การใช้ยาเคมีบำบัด เป็นการรักษาแบบเหมารวม ไม่จำเพาะกับบุคคล แต่ละคนจึงตอบสนองกับยาหรือรังสีแตกต่างกันไป นอกจากนี้มักเกิดอาการข้างเคียงรุนแรง และบางครั้งผู้ป่วยที่หายแล้ว ก็อาจเป็นมะเร็งเดิมได้อีก
วงการวิทยาศาสตร์การแพทย์จึงมีความพยายามที่จะทำวัคซีนหรือยาสำหรับโรคมะเร็งแบบเฉพาะบุคคลขึ้น โดยมีวิธีการคือ เริ่มจากนำเซลล์ปกติและเซลล์มะเร็งของผู้ป่วยออกมา “อ่านรหัสดีเอ็นเอ”
จากนั้น เปรียบเทียบรหัสในตำแหน่งต่าง ๆ เพื่อหาว่ามีตำแหน่งใดที่เปลี่ยนแปลงไปบ้าง โดยเฉพาะตำแหน่งที่เกี่ยวข้องกับการสร้างโปรตีน
จากนั้นใช้ซอฟต์แวร์ทางชีวสารสนเทศ หรือ bioinformatics มาจัดลำดับความสำคัญของส่วนที่เปลี่ยนแปลงไปนั้น ข้อมูลดังกล่าวจะเป็นจุดตั้งต้นในการนำมาสร้างเป็นวัคซีนชนิดพิเศษ เรียกว่า นีโอแอนติเจนวัคซีน (Neoantigen Vaccine) ซึ่งอาจจะเป็นสาย RNA หรือ DNA ก็ได้

จากนั้นจะฉีดวัคซีนดังกล่าวเข้าไปในร่างกายผู้ป่วย โดยอาจจะใส่เข้าไปแบบนั้น หรืออาจห่อหุ้มด้วยสารพอลิเมอร์ หรือ ไลโปโซม (Liposome)
ซึ่งวัคซีนจะไปกระตุ้นให้ระบบภูมิคุ้มกันของร่างกายให้จดจำเซลล์มะเร็งได้ ก่อนเริ่มการค้นหาและทำลายเซลล์มะเร็งอย่างจำเพาะ โดยไม่ยุ่งกับเซลล์ปกติ
ในปี พ.ศ. 2559 บริษัท BioNTech ของเยอรมนี ร่วมมือกับบริษัท Genetech ซึ่งเป็นบริษัทลูกของบริษัทยายักษ์ใหญ่ Roche เริ่มวิจัยความเป็นไปได้ที่จะสร้างวัคซีนมะเร็งแบบเฉพาะบุคคล และในปีต่อมาก็เริ่มทดสอบในผู้ป่วย 560 คน ที่เป็นมะเร็งแบบต่าง ๆ มากกว่า 10 ชนิด ซึ่งยังอยู่ระหว่างรอสรุปผลการวิจัย
ในเมืองไทยมีกลุ่มวิจัยที่ศึกษาค้นคว้าเกี่ยวกับวัคซีนรักษามะเร็งเฉพาะบุคคล เช่น กลุ่มวิจัยนีโอแอนติเจนและวัคซีนต่อมะเร็ง คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย นำโดย ดร.วิโรจน์ ศรีอุฬารพงศ์ และทีม โดยได้ศึกษาการสร้างวัคซีนจากผู้ป่วย 25 ราย
ขณะนี้อยู่ในขั้นตอนการศึกษาและพัฒนาวัคซีนให้มีประสิทธิภาพสูง เพื่อจะนำไปทดลองใช้กับผู้ป่วย
หากได้ผลดีจะเป็นความก้าวหน้าครั้งใหญ่ในการรักษาโรคมะเร็งที่ไม่จำเป็นต้องตายเสมอไป